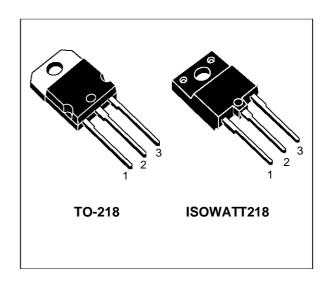
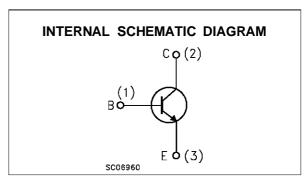


BUH1015 BUH1015HI

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- SGS-THOMSON PREFERRED SALESTYPES
- HIGH VOLTAGE CAPABILITY
- VERY HIGH SWITCHING SPEED


APPLICATIONS:


 HORIZONTAL DEFLECTION FOR COLOUR TV AND MONITORS

DESCRIPTION

The BUH1015and BUH1015HI are manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.

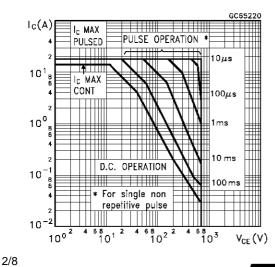
The BUH series is designed for use in horizontal deflection circuits in televisions and monitors.

ABSOLUTE MAXIMUM RATINGS

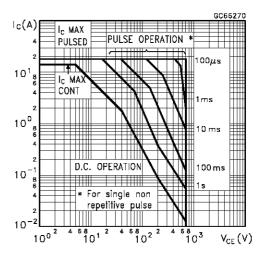
Symbol	Parameter	Parameter Value		Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	1500		V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	70	00	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	1	0	V
Ic	Collector Current	14		Α
Ісм	Collector Peak Current (tp < 5 ms)	18		Α
I _B	Base Current	8		Α
I _{BM}	Base Peak Current (t _p < 5 ms)	11		Α
P _{tot}	Total Dissipation at T _c = 25 °C	160	70	W
T _{stg}	Storage Temperature	-65 to 150		°C
Tj	Max. Operating Junction Temperature	150		°C

June 1996 1/8

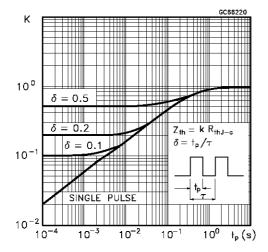
THERMAL DATA

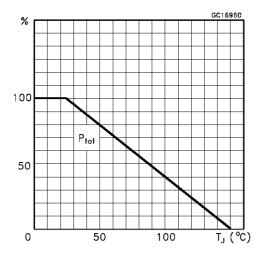

		TO-218	ISOWATT218	
R _{thj-case}	Thermal Resistance Junction-case Max	0.78	1.8	°C/W

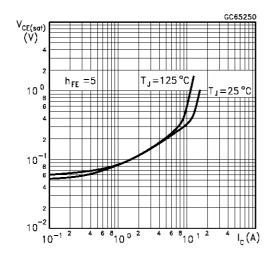
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

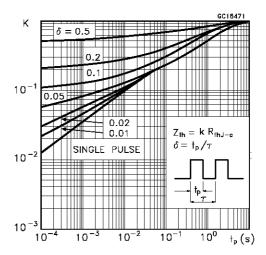

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1500 V V _{CE} = 1500 V T _j = 125 °C			1 2	mA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			100	μΑ
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage	I _C = 100 mA	700			V
V _{EBO}	Emitter-Base Voltage (Ic = 0)	I _E = 10 mA	10			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 10 A I _B = 2 A			1.5	V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	I _C = 10 A I _B = 2 A			1.5	V
h _{FE} *	DC Current Gain	I _C = 10 A V _{CE} = 5 V I _C = 10 A V _{CE} = 5 V T _j = 100 °C	7 5	10	14	
t _s t _f	RESISTIVE LOAD Storage Time Fall Time	$V_{CC} = 400 \text{ V}$ $I_{C} = 10 \text{ A}$ $I_{B1} = 2 \text{ A}$ $I_{B2} = -6 \text{ A}$		1.5 110		μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = 10 \text{ A}$ $f = 31250 \text{ Hz}$ $I_{B1} = 2 \text{ A}$ $I_{B2} = -6 \text{ A}$ $V_{ceflyback} = 1200 \sin\left(\frac{\pi}{5} \cdot 10^{6}\right) t$ V		4 220		μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$\begin{aligned} &\text{I}_{\text{C}} = 6 \text{ A} & \text{f} = 64 \text{ KHz} \\ &\text{I}_{\text{B1}} = 1 \text{ A} \\ &\text{V}_{\text{beoff}} = -2 \text{ V} \\ &\text{V}_{\text{ceflyback}} = 1100 \sin\!\left(\!\frac{\pi}{5} 10^6\right) \! t \text{V} \end{aligned}$		3.7 200		μs ns

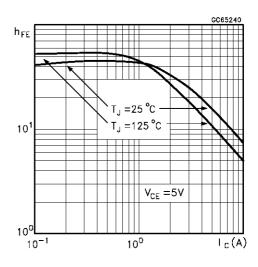
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

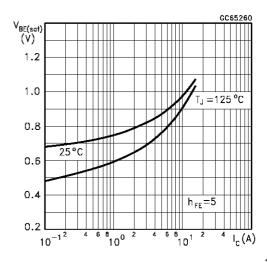

Safe Operating Area For TO-218

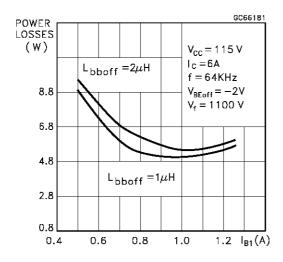

Safe Operating Area For ISOWATT218

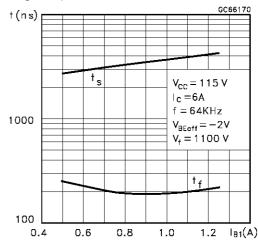

Thermal Impedance for TO-218

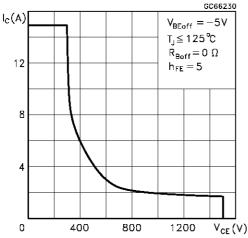

Derating Curve


Collector Emitter Saturation Voltage


Thermal Impedance for ISOWATT218


DC Current Gain


Base Emitter Saturation Voltage


Power Losses at 64 KHz

Switching Time Inductive Load at 64KHz (see figure 2)

Reverse Biased SOA

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current I_{B1} has to be provided for the lowest gain h_{FE} at $T_j=100\,^{o}C$ (line scan phase). On the other hand, negative base current I_{B2} must be provided the transistor to turn off (retrace phase). Most of the dissipation, especially in the deflection application, occurs at switch-off so it is essential to determine the value of I_{B2} which minimizes power losses, fall time t_f and, consequently, $T_j.$ A new set of curves have been defined to give total power losses, t_s and t_f as a function of I_{B1} at 64 KHz scanning frequencies for choosing the

optimum drive. The test circuit is illustrated in figure 1.

The values of L and C are calculated from the following equations:

$$\frac{1}{2}L(I_C)^2 = \frac{1}{2}C(V_{CEfly})^2$$
$$\omega = 2\pi f = \frac{1}{\sqrt{LC}}$$

Where I_C = operating collector current, V_{CEfly} = flyback voltage, f= frequency of oscillation during retrace.

Figure 1: Inductive Load Switching Test Circuits.

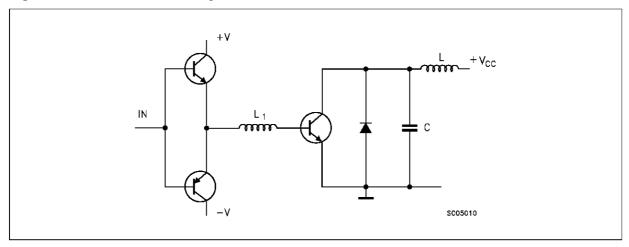
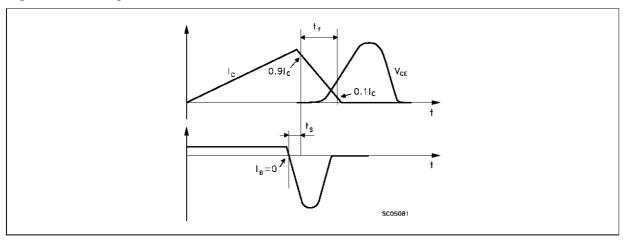
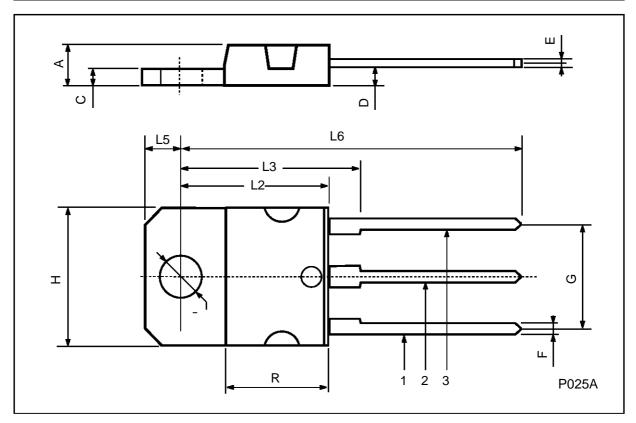
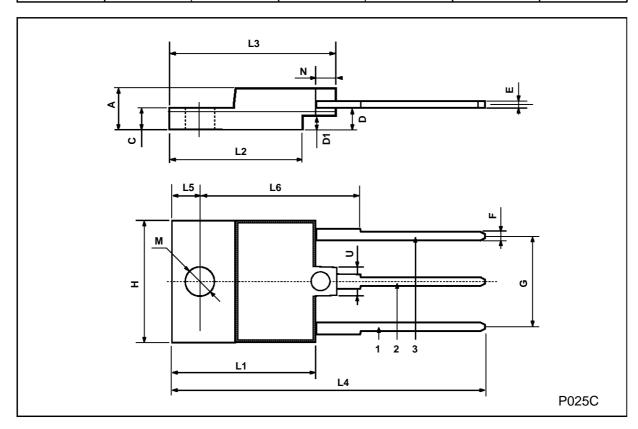




Figure 2: Switching Waveforms in a Deflection Circuit


TO-218 (SOT-93) MECHANICAL DATA

DIM.	mm			inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.7		4.9	0.185		0.193	
С	1.17		1.37	0.046		0.054	
D		2.5			0.098		
E	0.5		0.78	0.019		0.030	
F	1.1		1.3	0.043		0.051	
G	10.8		11.1	0.425		0.437	
Н	14.7		15.2	0.578		0.598	
L2	_		16.2	_		0.637	
L3		18			0.708		
L5	3.95		4.15	0.155		0.163	
L6		31			1.220		
R	_		12.2	_		0.480	
Ø	4		4.1	0.157		0.161	

ISOWATT218 MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	5.35		5.65	0.210		0.222	
С	3.3		3.8	0.130		0.149	
D	2.9		3.1	0.114		0.122	
D1	1.88		2.08	0.074		0.081	
Е	0.75		1	0.029		0.039	
F	1.05		1.25	0.041		0.049	
G	10.8		11.2	0.425		0.441	
Н	15.8		16.2	0.622		0.637	
L1	20.8		21.2	0.818		0.834	
L2	19.1		19.9	0.752		0.783	
L3	22.8		23.6	0.897		0.929	
L4	40.5		42.5	1.594		1.673	
L5	4.85		5.25	0.190		0.206	
L6	20.25		20.75	0.797		0.817	
М	3.5		3.7	0.137		0.145	
N	2.1		2.3	0.082		0.090	
U		4.6			0.181		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\hbox{@ }1996\ \text{SGS-THOMSON}\ \text{Microelectronics}$ - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

